Studies of the Angular Distortion around Ti³⁺ on the Trigonal (2a) Al³⁺ Site of LaMgAl₁₁O₁₉

Hui-Ning Dong^a and Wei-Dong Chen^b

 ^a Institute of Applied Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
^b Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, P. R. China

Reprint requests to Dr. H.-N. D.; E-mail:donghn@cqupt.edu.cn

Z. Naturforsch. **61a**, 83 – 86 (2006); received July 1, 2005

is theoretically studied from the perturbation formulas of the anisotropic g factors, g_{\parallel} and g_{\perp} , for a 3d¹ ion in trigonally distorted octahedra. Based on the studies, the metal-ligand bonding angle is found to increase from $\theta_{\rm H}$ in the host (2a) Al³⁺ site to θ in the impurity center by about 2°, due to the local tightness around the larger Ti³⁺ replacing the smaller Al³⁺. The theoretical results based on the above angular distortion are in reasonable agreement with the observed values.

Key words: Defect Structure; Gyromagnetic Factors; Crystal- and Ligand-Field Theory; Ti³⁺; LaMgAl₁₁O₁₉.

The angular distortion around the impurity Ti³⁺ on the trigonal (2a) Al³⁺ site of LaMgAl₁₁O₁₉